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Abstract. Fingerprint analysis and fingerprint identification have been the most widely used

tools for human identification. To this day, various models have been proposed to explain

how fingerprints are formed, ranging from the fibroblast model, which focuses on cell-collagen

interactions, to the buckling of thin layers model, both yielding significant results. In this

work, we present a reaction-diffusion model of Schnakenberg type, featuring an anisotropic

diffusion matrix that follows the ridge orientations supplied by other traditional fingerprint-

generation models, and notably yet allows minutiae—i.e. characteristic microstructures em-

bedded in fingerprints—to emerge. The statistical analysis of the minutiae distribution in a

randomly generated fingerprint collection is consistent with observations in real fingerprints.

The model can numerically generate fingerprint-like patterns corresponding to the four basic

classifications—arches, ulnar loops, radial loops, and whorls—as well as a variety of derived

forms. The generated patterns emerge on a convex domain that mimics the geometry of a

fingertip, exhibiting the diverse types of minutiae typically analyzed in fingerprint identifica-

tion and showing strong agreement with those observed in human fingerprints. This model

also provides insight into how levels of certainty in human identification can be achieved when

based on minutiae positions. All the algorithms are implemented in an open source software

named GenCHSin.

1. Introduction

Fingerprints exhibit a variety of structural patterns that assist forensic experts in the task of
human identification. They have become a central tool in cases where unidentified individuals
need to confirm their identities. Even in modern technologies-such as obtaining a passport
or personal ID, accessing bank accounts, entering restricted areas in buildings, or unlocking
cellphones-fingerprints serve as the master key to everyday security. This widespread use is
no coincidence; it is the result of over 200 years of observations, detailed classification, and
structured analysis across diverse populations.

Since the late 1700s, fingerprints have been studied, beginning with the German anatomist
Johann C. A. Mayer, who was the first European to recognize in 1788 that fingerprints are
unique to each individual [28]. This recognition marked a milestone upon which the discipline
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of fingerprinting would later be built. In the late 1800s, Victor Balthazard explored how per-
sonal identification could aid criminal investigations. He studied the traces of hair and their
characteristics, publishing with M. Lambert the first comprehensive study on the subject [4,21].
Balthazard later analyzed the combinatorial properties of fingerprint characteristics and devel-
oped a statistical model, over the hypothesis that accidents on the fingerprint’s ridge happen
independently, that quantified the certainty of identification. His model was subsequently used
by Edmond Locard to establish rules for personal identification in his manual [23].

All of this foundational work was focused on the examination and comparison of microstruc-
tures embedded in fingerprints, known as minutiae. In 1892, Sir Francis Galton published
his studies [12] on how the unique characteristics of fingerprints could be used for personal
identification, detailing the types of structures found within these patterns. He complemented
his research, particularly in the context of criminal records and the identification of unknown
individuals, with the anthropometric studies of Alphonse Bertillon [5]. Bertillon’s method in-
volved measuring physical features of fully developed individuals that should not change over
time. However, the approach failed when two people with very similar features were found to
share identical measurements, revealing the need for a truly invariable trait of the human body:
fingerprints.

Galton’s studies, along with the failure of Bertillon’s anthropometric identification method,
led to the recognition of three fundamental characteristics that make fingerprints suitable for
standardized human identification:

(1) Immutability: Once formed, ridge’s pattern organization do not change due to external
factors.

(2) Permanence: The patterns persist throughout a person’s lifetime.
(3) Variability: Fingerprints exhibit unique patterns across individuals, ensuring no two

are alike.

These three properties have served as a foundational basis for forensic science and law en-
forcement worldwide, guiding the use of fingerprint structures and their unique features for
personal identification over the years. Galton’s findings and advances in fingerprint analysis
were crucial to inspiring Juan Vucetich to become his apprentice. Building on these insights,
Vucetich developed a process and a set of instructions for criminal identification [44], along
with a simple classification system for the various fingerprint patterns that may appear at
crime scenes [45]. This basic classification, still in use today, relies on the presence or absence
of a structure resembling the Greek letter ∆, known as the “delta”. This system remains the
cornerstone of fingerprint classification and is illustrated in Fig. 1 with several examples.

The classification assigned to a fingerprint is not sufficient for personal identification on its
own. Within these patterns, multiple structures already mentioned and known as minutiae
appear, which can be categorized based on different combinations of three basic features: ter-
minations, bifurcations, and islands. These three fundamental structures can be combined to
form more complex minutiae, as shown in Fig. 2.
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Figure 1. The fundamental classification of fingerprint patterns, introduced by Juan

Vucetich, which is based on the presence or absence of a delta structure, illustrated as

a red triangle in the figures. Depending on the number of deltas (or their absence),

fingerprint patterns can be categorized as follows: a) Simple arch b) Simple external

loop c) Simple internal loop d) Mononuclear whorl.

Figure 2. Classification of different minutiae based on the basic structures observed

in fingerprint patterns.

J. Vucetich’s work has become the cornerstone of modern personal identification. To deter-
mine the correspondence of a fingerprint, the direction of the ridges is first analyzed, dividing
the pattern into three zones: nuclear, basal, and marginal (i.e., center, bottom, and top regions
of the domain). This structural division follows the principles of his foundational classification
system. Next, a minimum number of minutiae must be considered, at least six, although the
exact requirement varies by country. These minutiae, along with their relative positions within
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the pattern, must match those of a fingerprint stored in a database. The minimum number of
required minutiae was estimated using a combinatorial rule originally devised by V. Balthazard
[4, 21] and subsequently cited and endorsed by E. Locard [23], based on the size of the global
population. If the classification, ridge direction, and relative positions of the identified minu-
tiae align with a fingerprint in the database, the fingerprint can be considered identified. This
identification process has been extensively studied in various contexts [18, 37, 42], particularly
in criminology. However, if any of these steps fail—such as an insufficient number of match-
ing minutiae, unclear classification, or incorrect relative positioning—the fingerprint cannot be
considered identified. From this process, various classification systems have emerged, all rooted
in Vucetich’s foundational framework. These systems are adapted locally in different countries,
with the most famous, specific, and widely accepted being the one proposed by Edward Henry
in 1928 [16]. The main goal of this article is to build a model that mimics basic fingerprint
patterns with directional profile structures, as shown in Fig. 1. The model presented on this
paper reproduces special cases classified under the Chilean system, naturally forms minutiae
structures as illustrated in Fig. 2, and spontaneously exhibits the properties proposed by F.
Galton in [12].

The key to understanding fingerprint formation lies in the fixation of these patterns on
the skin, a process that occurs in the womb around the sixth month of fetal development.
These patterns remain with each individual from birth until death, and even beyond, making
this characteristic crucial for criminal investigations and the identification of human remains.
Although the exact mechanism behind the formation of these patterns is still unknown, research
efforts continue. Authors such as Fleury [11] and Glover and his team [13] have studied how
cell migration and collagen fibers interact during embryonic morphogenesis, and how these
interactions influence the development of various human body structures. Their findings offer
a compelling explanation for the origin of fingerprint patterns.

Another well-articulated mechanism for fingerprint pattern formation is based on non-linear
elastic interactions between skin layers, as explored by M. Kücken and A. C. Newell in [19,20].
In this model, the skin behaves as non-linear, curved elastic layers under pressure, buckling
out of the surface plane and giving rise to pattern formation through the release of elastic en-
ergy. This explanation involves a fourth-order partial differential equation system with periodic
boundary conditions, which yields highly accurate results. However, it falls short in generating
short-range structures such as hooks, islands, or dots—like those shown in Fig. 2—because the
buckling process tends to produce more continuous formations. When comparing the boundary
conditions with actual fingerprints, it becomes evident that fingerprint ridges do not encircle
the fingertips. Instead, the ridge joints maintain a specific angle relative to the folds of the
finger and the nail bed.

To address the limitations of short-range structures and boundary conditions in the Kücken
model, we propose a different approach that is the main novelty of the present work: the
natural curvature of the fingertip, along with the emergence of delta and center structures,
guides the interaction within a two-species reaction-diffusion system. This model is based on
differences in chemical composition that may lead to the formation of pores atop the ridges
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during the development of the ectodermal tissue layer. Reaction-diffusion systems are widely
used in biology, following the seminal work of A. Turing [43] on the instability of homogeneous
stationary solutions.

To construct the model for pattern formation, our main purpose is to establish that the
equation system must be capable of generating the various types of minutiae used in human
identification. Based on the various aspects and characteristics mentioned above, the model
built is based on a two species reaction-diffusion PDE model, where the Schnakenberg inter-
action model was the one selected for this purpose because it shows sets of parameters where
bifurcations and ridge endings appears naturally according to Zhao, Zhang, and Zhu on [48].
Once the model was defined, its parameters were tuned so that the typical distance between
maximum on the pattern mimic the actual distances between fingerprint ridges. This was
achieved using estimations from perturbation theory applied to the model, similar to those
used in [29, 31, 43], to interpret the system as exhibiting Turing instability, an approach also
proposed by Glover and his team in [13]. Most of the effort put on to mimic real fingerprints
have had great results on the self-organization of the patterns as is shown on Cappelli and Maio’s
work [6] with SFinGe, which has been the basis for other software and the complementary use
of artificial intelligence on Mistry’s work developing on PrintsGAN [30], which inherits the lack
in development of short range structures because of the synthetic ridge growing process, and
is still limited on simulation on the basic classification of fingerprints presented by J. Vucetich.
The model presented on this paper exhibits a natural finishing time for the simulation and a
natural way of formation of short-range structure, besides giving a wider range of simulation
on a more various kinds of fingerprint, which typically are classified as anomalies.

2. The model

Reaction-diffusion models have been widely studied in biological contexts [29, 31, 48] due to
their role in pattern formation and the wide variety of scenarios in which they can be applied.
A key feature is the Turing instability [43], originally introduced by Alan Turing in 1956 to
explain the emergence of patterns and intricate structures in animal pelage. This instability
gives rise to different structures depending on the parameters used, ranging from island-like
structures in 2D domains or spike-like structures in 1D, as studied by Winter and Wei [46], to
more complex labyrinthine patterns in 2D, as reported by Zhao, Zhang, and Zhu [48].

The convergence properties of stationary solutions and their limits have been investigated by
Takagi [39–41] in the context of Gierer–Meinhardt models, and by Masuda and Takahashi [27]
in relation to the formation of biological patterns. Additionally, the existence of solutions has
been explored by Antwi-Fordjour and Nkashama [2], contributing to an extensive theoretical
framework and a broad set of mathematical tools for understanding this phenomenon. Signif-
icant progress has been made in studying the existence and regularity of spike-like structures
in the one-dimensional Gierer–Meinhardt model, notably by Wei and Winter in [46], and the
instabilities shown on reaction-diffusion models over static and growing domains as the one
studied by Castillo, Sánchez-Garduño, and Padilla in [7].
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As discussed in the introduction, fingerprint minutiae can be categorized into three basic
structures: terminations, bifurcations, and islands. It has been noted that cross-diffusion ap-
plied to the Schnakenberg model of two species (activator and inhibitor), under periodic or
Neumann boundary conditions, can produce labyrinthine patterns that naturally form bifur-
cation and termination structures. Within certain parameter ranges, this also allows for the
emergence of island-like structures. The model features third-degree nonlinearity and differs
from other reaction-diffusion systems, such as the one studied by Wei and Winter in [46], which
involves a second-degree interaction in one species and a rational-type interaction in the other,
posing analytical challenges for small inhibitor values.

An example of this type of behavior, observed in biology and modeled by a reaction–diffusion
system, is presented by Zhao, Zhang, and Zhu in [48]. In their study, modifying one of the pa-
rameters leads to different pigment pattern formations on the skin of zebrafish, each exhibiting
distinct structural characteristics. This aligns with the goal of identifying a configuration that
satisfies the constructed model. We explored a wide range of parameters and identified a set
capable of producing the three desired structural patterns.

To address the problem, we first define a two-dimensional domain Ω that resembles the shape
of a fingertip. Since the working domain lies in the plane R2, the background curvature of the
ridge pattern must reflect the fact that the ridges primarily grow in the horizontal direction.
To mimic the curvature of the fingertip, the center (or nucleus) of the domain is vertically
deflected. These features are encoded through a direction matrix D, defined as

D := R(θ)SR−1(θ).

Here,

R(θ) =

(
cos (θ) − sin (θ)
sin (θ) cos (θ)

)
is a rotation matrix that determines the growth direction of the fingerprint-like pattern. This
direction depends on the presence and position of deltas, centers, and the background curvature
of the fingertip, making θ the parameter that encodes the tangential direction of the pattern.
The matrix S is a diagonal, positive-definite matrix. To ensure uniform ellipticity of the
simulated model, the condition det(S) = 1 is imposed, giving rise to a family of matrices of the
form

S =

(
γ 0
0 1/γ

)
,

where γ > 1 is a constant that ensures the diffusion is anisotropic. To mimic a more realistic
fingerprint pattern, γ represents the typical length of hooks and islands. Based on real fin-
gerprint data, we observed that the typical ratio between the width and length of islands and
hooks satisfies

width

length
=

γ
1

γ

= γ2 ∈ [2.5, 3.5].
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As the rotation matrix R(θ) must implicitly encode the positions of the centers and deltas
in the fingerprint, since they influence the angle of the ridges, the model has the potential to
simulate a wide variety of patterns. To construct a complete directional map for fingerprint-
like patterns, it is necessary to understand how ridge orientation changes depending on the
positions of deltas and centers.

Inspired by the directional maps studied by Cappelli and Maio in [6] for the development of
a synthetic fingerprint generator, we propose that the directional angle of ridge growth can be
obtained by knowing the positions of centers (x⃗C) and deltas (x⃗D), via

(1) θ(x⃗) = θ0(x⃗) + α

NC∑
C=1

arctan(x⃗C − x⃗) + β

ND∑
D=1

arctan(x⃗D − x⃗).

Here, θ0 is a parameter that represents a background flexion or twist independent of the centers
or deltas. The coefficient α is the Poincaré index associated with the centers, and β is the
Poincaré index associated with the deltas, which has previously been studied only in the context
of directional maps [32,36].

To obtain the parameters θ0, α, and β in a realistic way, we performed a least-squares
minimization between equation (1) and empirical data extracted from real fingerprints, such as
those shown in Fig. 3. A dataset of 200 fingerprints was collected from 20 consenting individuals.
Each fingerprint was annotated with the positions of its centers and deltas, and approximately
15 ridge orientation samples were recorded per domain. The fingerprints used to construct
Table 1 were categorized according to the following classification: 21 arches (including tented
arches), 55 radial loops, 61 ulnar loops, 36 mononuclear whorls, and 27 binuclear whorls.

Figure 3. A set of fingerprints used to obtain the values in Table 1. Red stars

indicate the positions of centers and deltas, while blue segments are used to measure

ridge angles.
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Parameters (rad) Pinned Arches Loops Mononuclear Whorls Binuclear Whorls

θ0 0.78 ± 0.21 0.61 ± 0.24 0.91 ± 0.14 0.98 ± 0.75
α -0.45 ± 0.25 -0.51 ± 0.12 -1.02 ± 0.07 -0.48 ± 0.18
β 0.52 ± 0.012 0.49 ± 0.018 0.50 ± 0.017 0.52 ± 0.22

Table 1. Parameter values obtained through a least-squares minimization process.

The statistical least-squares minimization process shows strong agreement between the ob-
served ridge behavior and the results reported by Cappelli, whose simulations used α = −1

2

and β = 1
2
as input parameters. Table 1 suggests that mononuclear whorls are consistently

composed of two closely positioned centers (i.e., NC = ND), and that the average Poincaré
index of fingerprint patterns is zero.

To define appropriate boundary conditions, we first examined how ridge patterns behave near
the fingernail and along the lateral edges of the fingertip in real fingerprints, including arches,
loops, and whorls. Near the borders, ridge orientation tends to align horizontally, following
the tangential direction modeled by the matrix D. This observation motivated the use of a
Neumann-like boundary condition, expressed as D∇u ·ν = 0 on ∂Ω, to better replicate realistic
fingerprint patterns.

Finally, we propose the following model as a candidate for simulating fingerprint-like pattern
formation:

(2)



∂tu = Duu∇ · (D∇u) +Duv△v +K(a− u+ u2v) in Ω
∂tv = Dvv∇ · (D∇v) +Dvu△u+K(b− cv − u2v) in Ω

D∇u · n̂ = 0 on ∂Ω
D∇v · n̂ = 0 on ∂Ω
u(0, x, y) = u0(x, y) for (x, y) ∈ Ω
v(0, x, y) = v0(x, y) for (x, y) ∈ Ω.

Here, the initial conditions u0, v0 ∈ L2(Ω), and the parameters Duu, Duv, Dvu, Dvv, K, a, b, and
c are positive constants, with

DuuDvv −DuvDvu > 0.

Note that the above condition guarantees that the linearized PDE system around the unique
homogeneous stationary solution at c = 0, for the isotropic diffusion case, corresponds to an
elliptic variational problem, making the PDE problem suitable for numerical simulations via
functional minimization. In this case, the homogeneous stationary solution for c = 0 is uniquely

given by u = a + b and v =
b

(a+ b)2
, and the initial conditions are modeled as stochastic

perturbations around it.
To develop a model capable of generating not only the basic fingerprint types described by

previous authors, but also a broader range of fingerprint-like patterns, we incorporated the
Chilean fingerprint classification key to define the range of the variable θ.
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In 1929, Chilean police were tasked with studying and adapting the Argentinian fingerprint
classification system. Today, the Chilean system comprises fourteen distinct classification val-
ues, with an additional category used in cases of amputation. This framework is rooted in
the principles established by Vucetich and Henry [16, 44, 45], which define various fingerprint
characteristics. These principles are further elaborated in Alberto Teke Schlicht’s book [42], a
reference still widely used for human identification and forensic medicine. The Chilean finger-
print classification key is presented in Table 2.

0: Simple arch 5: External variable loop a: Binuclear medial whorl
1: Tented arch 6: Mononuclear internal whorl b: Binuclear external whorl
2: Simple internal loop 7: Mononuclear medial whorl c: Hooked whorl or hooked loop
3: Internal variable loop 8: Mononuclear external whorl x: Unclassifiable
4: Simple external loop 9: Binuclear internal whorl z: Amputation

Table 2. Fingerprint classification used in the Chilean system.

This classification key has proven highly effective in forensic work conducted by Chilean
police, as it enables the identification of altered or miscategorized fingerprints. This is par-
ticularly useful in cases where chirality-related anomalies, frequently observed in day-to-day
forensic analysis, affect pattern interpretation.

Value 0 corresponds to a normal arch, which presents neither deltas nor centers. Value 1
denotes an arch with a center, although the ridges do not encircle it; instead, they pass above
and below. Values 2 and 4 represent loops with fixed delta positions that are independent of
the hand being analyzed. On the right hand, value 2 indicates a radial loop, while value 4
indicates an ulnar loop; for the left hand, these interpretations are reversed. Values 3 and 5
also correspond to loops with delta positions matching those of values 2 and 4, respectively, but
they exhibit atypical ridge flow around the center that does not conform to the delta’s position.

Values 6–9, as well as a and b, distinguish different types of whorls based on how the delta
branches spread within the pattern and the number of identifiable centers, depending on which
lower branch overlaps the other. Value c refers to loops or whorls characterized by a pseudo-
delta appearing in the central region of the fingerprint, an anomaly noted in Henry’s classifica-
tion system. Value x is assigned to fingerprints that are too damaged to classify or contain scars
that significantly distort the pattern. Value z is used when the finger has been amputated.

To distinguish between mononuclear and binuclear whorls, one must examine the extensions
of the guideline ridges that emerge from the deltas. Both centers and deltas correspond to
singular points within the fingerprint pattern: centers are associated with a single guideline
ridge, while deltas typically have three. Of these, one ridge usually points toward the exterior
of the domain, while the other two are used for classification within the Chilean system.

For horizontally oriented guideline ridges, whorl classification depends on how the ridge from
the left delta interacts with the right delta. If it extends and passes above three ridges over the
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right delta, the whorl is categorized as internal. If it passes below three ridges under the right
delta, it is categorized as external. If neither condition is met, the whorl is classified as medial.

For vertically oriented guideline ridges, classification depends on their interaction with the
centers. If one of these ridges extends and separates the centers, the pattern is classified as a
binuclear whorl. If both ridges curve around the centers without separating them, the pattern
is classified as mononuclear.

Based on these structural details, we developed an open-source software named GenCHSin
(Chilean Synthetic Fingerprint Generator), which can generate a wide range of fingerprint
patterns using the Chilean classification key presented in Table 2.

3. Numerical simulations

There have been various approaches to generating synthetic fingerprints. One notable ex-
ample is the SFinGe program developed by Cappelli, Maio, and their team [6]. This program,
based on directional maps and seeded growth, generates synthetic fingerprints through wave
propagation and the addition of noise. The results are generally very good, although they
depend heavily on the wavelength used.

The SFinGe algorithm has served as a foundation for several subsequent developments: Pries-
nitz and his team created SynCoLFinGer [33]; Mistry’s group used it to develop a fingerprint
search algorithm for training machine learning models [30]; Engelsma’s group adopted its ideas
to build PrintsGAN [9]; and Wyzykowski’s team extended the approach to incorporate a third
recognition level for detecting and characterizing pores [47].

While these programs produce synthetic fingerprints that closely resemble real ones, they
often fail to reproduce short-range structures such as islands, dots, or hooks, an inherent lim-
itation of the Cappelli and Maio method. As shown in Fig. 4, such fine-scale features emerge
naturally in the model presented in Section 2.

Figure 4. Examples of two distinct synthetic fingerprints generated using the pro-

posed model. Red rectangles highlight the presence of short-range structures such as

hooks, islands, and dots in each image.

To obtain numerical results from the proposed model, we developed the open-source software
GenCHSin. The implementation began in Python, incorporating the linear solver from the
FEniCS Project, an open-source platform for solving partial differential equations using Python
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and C++. FEniCS is capable of simulating a variety of elliptic problems, including the heat
equation, Navier–Stokes equation, and Laplace equation.

This solver was used to simulate the model presented in (2), employing finite elements for
spatial discretization and finite differences for time integration. To reduce the simulation time,
we adopted an explicit resolution scheme, which is shown as follows:

(3)


un+1 − un

∆t
= ∇ · (D∇un+1) +Duv△vn +K(a− un+1 + un+1unvn) in Ω

vn+1 − vn

∆t
= ∇ · (D∇vn+1) +Dvu△un +K(b− cvn+1 − ununvn+1) in Ω.

Each of the equations in (3) gives rise to minimization functionals

J1(u
n+1, un, vn) and J2(v

n+1, un, vn),

constructed inside the code by integrating the system over the domain and applying the bound-
ary conditions. These functionals are then used by the FEniCS linear solver (see for instance
[1, 3, 22]), integrated into GenCHSin, to build the numerical solutions. We recall that, to
ensure a wide variety of patterns, the initial conditions consisted of uniform random perturba-
tions around the homogeneous stationary solution of the system when c = 0, as described in
Section 2.

Upon completing 4000 iterations, the simulation process concludes and the program saves an
image of the final state of the activator u, representing a stationary numerical solution of the
model described in (2) and previously introduced in Section 2. The simulation terminates when
the minimization functionals J1(u

n+1, un, vn) and J2(v
n+1, un, vn), derived from the variational

formulation of the linearized problem, can no longer be improved. The number of iterations
was determined empirically through trial and error based on initial realizations.

To ensure that the simulated patterns resembled the shape of a real fingerprint on a flat 2D
surface, the domain Ω was defined as a square of 12 units in length with a semicircle of 6 units
in radius attached to its top. For the numerical simulation space H1(Ω)×H1(Ω), we used 200
nodes based on second-order Lagrange polynomials to ensure smoothness and continuity across
the domain. The number of nodes was adjusted to obtain sufficiently regular solutions without
compromising computational efficiency. For a detailed discussion of Sobolev spaces and their
role in partial differential equations, we refer the reader to the classical book [10].

To make the simulated patterns more visually comparable to real fingerprints, the generated
images are processed using a black-and-white filter as shown in Fig. 5. This filter retains only
the regions where the solution exceeds a certain threshold, mimicking the appearance of an
ink-based fingerprint impression. This post-processing step allows for a qualitative analysis of
the structures formed during the simulation.

The threshold for the black-and-white filter is set at 120 on a scale from 0 to 255 (the standard
grayscale range), chosen so that the characteristic width of the lines closely resembles that of
real fingerprint impressions. After applying the filter, the images are cropped to retain only
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the domain Ω. These processed images are then analyzed to compare identification-relevant
features and behavioral patterns with those observed in real fingerprints.

Figure 5. a) Plot of the activator u at the end of the simulation process. b) Result

of applying the cutting and black-and-white filter to the corresponding image.

To contextualize our approach, it is useful to examine the state of the art in synthetic
fingerprint generation models, such as the work of Cappelli (see Section 2) and Kücken (see
Section 1). The model introduced by Cappelli [6] is based on wave-like evolution, simulating
ridge growth from multiple seed points. It successfully reproduces various fingerprint minutiae,
although the termination of the simulation is manually controlled by the user.

In contrast, Kücken’s model [19, 20] is formulated as a fourth-order non-linear energy min-
imization system, offering strong theoretical foundations and compelling results. However, it
does not capture fine-scale structures such as points, hooks, and islands, as illustrated in Fig. 2.
Additionally, the model employs periodic boundary conditions, which are mathematically con-
venient but lack the realism needed to reflect the natural boundaries of actual fingerprints.

Both models are limited in their ability to reproduce the full diversity of whorls and loops
found in human fingerprints, particularly those classified by Henry as anomalies. Our model
aims to address these limitations by incorporating structural variability and finer morphological
details.

Building on the comparison with existing models, the approach presented in this paper
offers several advantages. It exhibits stationary states, with simulations converging through
finite-element energy minimization. The model is capable of generating all minutiae-related
structures shown in Fig. 2, and can reproduce the main fingerprint types—arch, loop, and
whorl—according to Vucetich’s fundamental classification. The presence of stationary states
provides a natural stopping criterion for the simulation. As shown in Fig. 6, the model presented
on this paper is capable of generate the fingerprint-like patterns that are in good agreement
with the state-of-art models mentioned in Section 1, preserving the shape and auto-organization
expected on real fingerprints, exhibiting the wide range of minutiae expected to find.

In addition, the model can produce a wide variety of ridge configurations observed in hu-
man fingerprints as shown in Fig. 7, which in some aspects cannot be easily classified by
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Vucetich’s fundamental classification. These kind of patterns are not simulated or studied on
the state-of-art fingerprint pattern generator models, which is the reason why it was used the
Chilean classification key: to ensure the wide variety of possible patterns that appears in real
fingerprints.

Figure 6. Different results from the simulation of the proposed model correspond

to the fundamental fingerprint classifications, including: a) Simple arch, b) Simple

external loop, c) Simple internal loop, and d) Mononuclear medial whorl.

Figure 7. Different simulation results of the proposed model, corresponding to the

Chilean fingerprint classification key: a) Tented arch, b) Internal variable loop, c)

External hooked loop, d) Binuclear medial whorl, and e) Hooked whorl.

Its formulation is based on second-order equations, which makes it relatively easy to im-
plement. The different fingerprint patterns categorized by the Chilean classification key can
be reproduced without difficulty, and short-range structures such as hooks, islands, and dots
emerge naturally, as illustrated in Fig. 4.

4. Validation of the model

Among the various fingerprint generation models studied over the years, the one proposed
here exhibits key characteristics of an evolution-based approach capable of simulating finger-
print formation while retaining mathematical properties suitable for further analysis. The
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stationary solutions to which the simulations converge are stable under numerical perturba-
tions, mirroring the permanence of human fingerprints over time, and thus lend credibility to
the model.

The average number of minutiae found in real fingerprint patterns ranges from 60 to 130
per fingerprint. This variation depends on the number of deltas present in the pattern, with
fewer deltas typically resulting in fewer minutiae. These values are consistent with the average
number of minutiae observed in real fingerprints [12, 14, 15, 38]. Additionally, the number of
ridges crossing Galton’s line in loops and whorls, or located within the nuclear region in arches,
varies between 5 and 20 depending on the fingerprint type analyzed, aligning well with previous
studies [12, 38].

Bridges, hooks, islands, and points are particularly used in forensic fingerprint analysis for
human identification due to their rarity, making them strong indicators that the observed
pattern belongs to a particular fingerprint. These types of minutiae appear naturally in the
model presented, as shown in Fig. 4, regardless of the simulated pattern type. However, such
minutiae are very rare in real fingerprints, as studied by Gutierrez–Redomero and her team
in Spanish and Argentinian populations [14, 15, 34], and tend to be absent in state-of-the-art
models, as previously mentioned.

To compare the morphological aspects [12,24,37] and the criminological aspects of the model
[23,42,44,45] with the perspective of real fingerprints, several synthetic fingerprints were tested
for the fundamental characteristics that make a pattern classifiable as a fingerprint. These
include Galton’s line, ridge guidelines, and the presence of basal, nuclear, and marginal zones,
features illustrated in Fig. 8, which allow these synthetic patterns to be categorized as plausible
fingerprint structures.

For a more detailed analysis we have performed 100 different simulations on four synthetic fin-
gerprint kinds of patterns (simple arch, simple internal loop, simple external loop and mononu-
clear external whorl) to compare the quantitative and qualitative properties shown by the
model with real fingerprint properties. For this task, all the parameters of the model have
been fixed for each of the fingerprint patterns simulated, which means that the constants
Duu, Duv, Dvu, Dvv, K, a, b and c are the same for the 400 simulations, and the matrix D is the
same for each kind of pattern (meaning all simple arches have the same directional map, all
simple internal loops have the same directional map, etc.). Each iteration is performed using
different random initial conditions.

To build the spatial distribution of minutiae, the images were divided into 512 independent
rectangles, each containing no more than three independent ridges, to analyze the presence or
absence of minutiae according to Fig. 2. The procedure shown in Fig. 8 indicates that loops
and whorls tend to organize minutiae appearance along Galton’s line, while arches display a
more uniform distribution, as reported in [12, 14, 38]. This has a direct impact on minutiae
recognition base models, leading to the separation of marginal, nuclear, and basal zones in
synthetic fingerprints that are analogous to the marginal, nuclear, and basal zones in real
fingerprints, with minutiae density and distribution similar to those reported in [24,26,35].
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Figure 8. Examples of well-defined zones on synthetic fingerprints that are of high

interest in fingerprint forensic science, where blue corresponds to marginal zones, green

corresponds to nuclear zones, and yellow corresponds to basal zones. These correspond

to: a) Simple arch, b) Simple external loop, c) Simple internal loop, and d) Mononuclear

external whorl. The red lines drawn over the diagrams correspond to Galton’s lines

for each classification, which are typical characteristics used as references in fingerprint

identification. The basal, nuclear, and marginal zones are divided by the ridge organi-

zation given by the position of centers and deltas, where the nuclear zone is bounded

at the upper limit by the upper delta branch that extends following the directional

map, and at the bottom limit by the lower delta branch that also extends along the

directional map. For arches, the nuclear zone is estimated as the middle third of the

domain. The lower plots correspond to the spatial distribution of minutiae appearance

on each of the fingerprints shown above, corresponding to e) Simple arch, f) Simple

external loop, g) Simple internal loop, and h) Mononuclear external whorl. i), j), and

k) correspond to examples of simulating normal external loops with the exact same

parameters Duu, Duv, Dvu, Dvv,K, a, b and c, but differing only in the stochastic initial

conditions, showing the kind of sets studied.

With this procedure of categorizing minutiae, it was possible to count the number of minutiae
inside each domain. In Fig. 9, a) shows the distribution of the number of minutiae, ranging
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between 60 and 130. The fewer deltas and centers a fingerprint has, the fewer minutiae tend to
appear. Meanwhile, in Fig. 9, b) shows that the number of ridges over Galton’s line in the case
of loops and whorls, or the number of ridges in the middle third in the case of arches, tends to
increase with the number of deltas. This is related to the ridge density present in each kind of
fingerprint. These two indicators are in good agreement with what is found in real fingerprints
according to various authors [12,14,15,38].

Figure 9. Plots for a) the distribution of the number of minutiae on synthetic finger-

prints depending on the kind of fingerprint simulated, and b) the distribution of the

number of synthetic ridges over Galton’s line. For arches, as they don’t have a center

or delta, the number of synthetic ridges is calculated using the middle third area and

counting the number of synthetic ridges along a vertical line.

For additional verification, several synthetic patterns generated by the model were tested
using the AFIS (Automated Fingerprint Identification System) computational system [8, 17,
25, 35], software commonly used to compare fingerprints obtained by forensic experts with
an internal database. This system relies on the position and orientation of ridges to suggest
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possible candidates for further comparison. AFIS is widely used by law enforcement agencies
around the world, including the Chilean police, for biometric identification tasks.

To illustrate this process, Fig. 10 shows some of the tests performed with synthetic finger-
prints using AFIS. In the proposed image for analysis, the positions and directions of minutiae
are marked (without discriminating the type of minutiae, which is the responsibility of foren-
sic experts), and AFIS compares the given minutiae against its database, producing a list of
candidates ordered by likelihood. Although this method requires expert validation to deter-
mine the actual match, due to its lack of minutiae classification and dependence on database
size, it provides a fast and effective shortlist of possible candidates. These results demonstrate
how a computational system like AFIS can process synthetic fingerprints as if they were real,
identifying them as plausible fingerprint-like patterns.

Figure 10. Synthetic fingerprints tested on the PDI database using the AFIS com-

putational program. a) corresponds to the test of a synthetic simple arch, and b)

corresponds to the test of a synthetic simple external loop. In the fingerprint des-

ignated for search, the position and direction of minutiae are marked (with a circle

attached to a segment), shown on the left panels of a) and b) as yellow and red circles

with segments. The right panels in a) and b) correspond to real fingerprints that AFIS

proposed as possible candidates for identification. The red segments on the left pan-

els indicate positive matches in position and direction with the reference on the right

panel, while yellow segments indicate mismatches.



18 F. SEPÚLVEDA-SOTO, L. SOTO-BARRIOS, C. ROMÁN, AND A. OSSES

5. Future work and possible applications

As mentioned earlier, the task of identifying individuals through fingerprint recognition is
the result of more than 200 years of study. One of the key milestones in establishing certainty
in identification is the combinatorial result attributed to Balthazard, supported by Locard in
[23] and experimentally estimated by Galton in [12], as presented in the introduction. This
milestone states that the probability of similarity based on the coincidence of n minutiae can

be approximated as P (n) =
1

4n
, based on the assumption that minutiae can be modeled as

uniformly distributed stochastic variables.
Balthazard’s hypothesis states that for n pre-established positions, only one of two possible

topological accidents—bifurcation or termination—can occur, and these are independent from
each other. Every minutiae shown in Fig. 2 can be decomposed into these two microstructures.
This condition doubles the possible outcomes of the stochastic variables, since both termination
and bifurcation have only one axis of symmetry, which is parallel to the directional map. As
Balthazard’s hypothesis assumes that the n minutiae are independent, the probability of finding
n coinciding minutiae becomes the product of the individual probabilities of coincidence. This
result is one of the foundational arguments that have led police forces around the world to
require more than 10 minutiae for identification. In the specific case of the Chilean identification
system, the minimum threshold is 12 minutiae, based on Locard’s reasoning [23]. Using the data
presented in Section 4, and by categorizing the different structures present in each independent
rectangle of the image, it was possible to build a histogram, shown in Fig. 11, of similarity
based on the coincidence of minutiae positions.

Figure 11. Histogram of the similarity of pairs on synthetic fingerprints done over 404

different fingerprints distributed evenly between simple arches, normal internal loops,

normal external loops and mononuclear external whorls as described on section 4. To

each histogram of similarity of pairs, a Poisson distribution was adjusted to the data.

From Fig. 11, it is possible to infer that the pairwise coincidence of minutiae, based on the
discretization of the image into 512 independent rectangles, is in good agreement with a Poisson
distribution. This distribution arises as a limiting case of the binomial distribution when the
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number of trials is large and the probability of success is small. It can be obtained as the
sum of independent binomial variables, which opens the possibility of studying Balthazard’s
hypothesis from a probabilistic perspective in a PDE model.

The results show a monotonous increase in the λ parameter of the Poisson distribution for
minutiae pairs, depending on the number of centers and deltas. This trend can be explained by
the high concentration of minutiae density around centers and deltas, as illustrated in Fig. 8.

The model presented here will be used in future work to explore the relationship between
minutiae coincidence in synthetic fingerprints and extrapolate these findings to real fingerprints.
This approach provides a more robust mathematical foundation for fingerprint analysis, helping
to better understand the principles behind Balthazard’s hypothesis and to compare it with more
modern models.

It is also worth mentioning that in GenCHSin we have developed a feature to make sim-
ulations resemble real fingerprints more closely. This involves subdividing the pattern into
independent rectangles—similar to the subdivisions shown in Fig. 8, but containing no more
than one synthetic ridge each—so they can be manipulated as independent domains capable
of hosting pores along the ridge. The positions of the pores (xp, yp) are selected stochasti-
cally, following a uniform distribution on the synthetic ridge inside each independent rectangle,
and the radius of each pore rp, which is measured in pixels, is selected following a Gaussian
distribution centered at 3 with a standard deviation of 0.7. The discretized domain in the
interior of each synthetic pore, which corresponds to the family of pixels (x, y) that satisfy
(x − xp)

2 + (y − yp)
2 ≤ r2p, is set to the maximum intensity value in the standard grayscale

range, which corresponds to 255.
Once all pores are placed, a Gaussian filter is applied, centered on the nuclear region of the

synthetic fingerprint, so that the intensity of the pattern decays exponentially with distance
from the center. Finally, the resulting pattern is blurred to simulate the more realistic appear-
ance of a fingerprint that could be recovered from a scene. An example of this process is shown
in Fig. 12.

Figure 12. a) Synthetic fingerprint generated with GenCHSin before applying the

porous fixation process described. b) Synthetic fingerprint showing the grid used to

define the porous sections. c) Final result given by GenCHSin after applying the porous

fixation, Gaussian filtering, and blurring process.
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The structure and distribution of pores must be analyzed to assess the degree of similarity
between the final output of GenCHSin and real fingerprints.

To conclude this section, we remark that the model’s characteristics make it suitable for
addressing open questions regarding the reliability of fingerprint analysis, the independence of
minutiae appearance, and the minimum number of minutiae coincidences required in different
countries for human identification via fingerprints. Moreover, its good agreement with real
fingerprint characteristics, the wide range of parameters, and the stochastic nature of the initial
conditions provide the possibility of applying this model in industrial contexts, particularly in
biosynthetic security as a complement to biometric security in both physical and digital forms.

6. Conclusions

We have successfully built a model that can fully generate different kinds of fingerprint
pattern formed on humans, developing the open source software named GenCHSin that is
based on the specific Chilean classification key, and can exhibit the wide variety of minutiae
and ridge organization which can be seen on real fingerprints. The model presented here has the
characteristic of having multiple stationary states which only depend on the initial conditions
taken in every simulation, which gives the possibility of generating a large amount of different
synthetic fingerprints which have common parameters.

The model presented is in good agreement with the different characteristics exhibited by real
fingerprint, such as ridge direction, border conditions, number of minutiae per fingerprint, ridge
density and characterization of zones on the domain. The resulting images can be analyzed
by different identification software, such as AFIS, which is used on human identification via
fingerprint recognition, determining its different characteristics.

This model has the potential to open a wide variety of aspects in fingerprint applications, such
as the construction of complementary biosynthetic methods of identification, virtual identities or
the construction of training databases for artificial intelligence programs that do not violate the
privacy of people, and a wide variety of aspects in fingerprint analysis, such as the construction
of similarity models that can ensure a minimal analysis for human identification.
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